Laser cooling of a semiconductor load to 165 K
نویسندگان
چکیده
منابع مشابه
Local laser cooling of Yb:YLF to 110 K.
Minimum achievable temperature of ~110 K is measured in a 5% doped Yb:YLF crystal at λ = 1020 nm, corresponding to E4-E5 resonance of Stark manifold. This measurement is in excellent agreement with the laser cooling model and was made possible by employing a novel and sensitive implementation of differential luminescence thermometry using balanced photo-detectors.
متن کاملApplication of Phase Change Material (PCM) for Cooling Load Reduction in Lightweight and Heavyweight Buildings: Case Study of a High Cooling Load Region of Iran
The application of phase change material (PCM) for energy conservation purposes in the residential buildings was investigated in the present study. Two types of building in terms of materials as the lightweight building (LWB) and heavyweight building (HWB) located in a high cooling load demanding region of Iran were considered for the study. Different types of PCM from organic and inorganic cat...
متن کاملLaser cooling to quantum degeneracy.
We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1 μK on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooli...
متن کاملLaser cooling of solids to cryogenic temperatures
Laser radiation has been used to cool matter ranging from dilute gases to micromechanical oscillators. In Doppler cooling of gases, the translational energy of atoms is lowered through interaction with a laser field1,2. Recently, cooling of a high-density gas through collisional redistribution of radiation has been demonstrated3. In laser cooling of solids, heat is removed through the annihilat...
متن کاملLaser Cooling of Semiconductors
Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, a phenomenon known as laser cooling or optical refrigeration proposed in 1929 by Peter Pringsheim. In solid state materials, the cooling is achieved by annihilation of lattice vibrations (i.e., phonons). Since the first experimental demonstration in rare-earth doped glasses, considerable progress ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.018061